Gotzmann Ideals of the Polynomial Ring

نویسندگان

  • SATOSHI MURAI
  • TAKAYUKI HIBI
چکیده

Let A = K[x1, . . . , xn] denote the polynomial ring in n variables over a field K. We will classify all the Gotzmann ideals of A with at most n generators. In addition, we will study Hilbert functions H for which all homogeneous ideals of A with the Hilbert function H have the same graded Betti numbers. These Hilbert functions will be called inflexible Hilbert functions. We introduce the notion of segmentwise critical Hilbert function and show that segmentwise critical Hilbert functions are inflexible.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On annihilator ideals in skew polynomial rings

This article examines annihilators in the skew polynomial ring $R[x;alpha,delta]$. A ring is strongly right $AB$ if everynon-zero right annihilator is bounded. In this paper, we introduce and investigate a particular class of McCoy rings which satisfy Property ($A$) and the conditions asked by P.P. Nielsen. We assume that $R$ is an ($alpha$,$delta$)-compatible ring, and prove that, if $R$ is ni...

متن کامل

A combinatorial proof of Gotzmann's persistence theorem for monomial ideals

Gotzmann proved the persistence for minimal growth for ideals. His theorem is called Gotzmann’s persistence theorem. In this paper, based on the combinatorics on binomial coefficients, a simple combinatorial proof of Gotzmann’s persistence theorem in the special case of monomial ideals is given. Introduction Let K be an arbitrary field, R = K[x1, x2, . . . , xn] the polynomial ring with deg(xi)...

متن کامل

Castelnuovo-Mumford regularity of products of monomial ideals

Let $R=k[x_1,x_2,cdots, x_N]$ be a polynomial ring over a field $k$. We prove that for any positive integers $m, n$, $text{reg}(I^mJ^nK)leq mtext{reg}(I)+ntext{reg}(J)+text{reg}(K)$ if $I, J, Ksubseteq R$ are three monomial complete intersections ($I$, $J$, $K$ are not necessarily proper ideals of the polynomial ring $R$), and $I, J$ are of the form $(x_{i_1}^{a_1}, x_{i_2}^{a_2}, cdots, x_{i_l...

متن کامل

Topics on the Ratliff-Rush Closure of an Ideal

Introduction Let  be a Noetherian ring with unity and    be a regular ideal of , that is,  contains a nonzerodivisor. Let . Then . The :union: of this family, , is an interesting ideal first studied by Ratliff and Rush in [15]. ‎  The Ratliff-Rush closure of  ‎ is defined by‎ . ‎ A regular ideal  for which ‎‎ is called Ratliff-Rush ideal.‎‏‎ ‎ The present paper, reviews some of the known prop...

متن کامل

The Lefschetz Property for Componentwise Linear Ideals and Gotzmann Ideals

For standard graded Artinian K-algebras defined by componentwise linear ideals and Gotzmann ideals, we give conditions for the weak Lefschetz property in terms of numerical invariants of the defining ideals.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007